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EINSTEIN HYPERSURFACES IN A KAHLERIAN
MANIFOLD OF CONSTANT HOLO-
MORPHIC CURVATURE

SHIING-SHEN CHERN

Introduction

In his dissertation Brian Smyth studied the complete hypersurfaces in a
complex space-form whose induced metric is einsteinian and proved that
these are either totally geodesic or certain hyperquadrics of the complex
projective space. We wish to show in this note that the corresponding local
theorem is true:

Theorem. Let V be a kihlerian manifold of dimension > 3 with constant
holomorphic sectional curvature K. Let f: M —V be a holomorphically im-
mersed hypersurface such that the induced metric is einsteinian. Then, if
K <0, M is totally geodesic. If K >0 and V is identified with the complex
projective space, M is either totally geodesic or a hypersphere (cf. §3 for
definition).

1. Preliminaries on kahlerian geometry

We will summarize.the basic formulas of kdhlerian geometry. For details
cf. [1].

In order to avoid repetitions it will be agreed that our indices have the
following ranges throughout this paper:

1<i,jk,1<n,
(1) 1<, Br,6<n+1,
0<A,B,C,D<Ln+ 1.

Let V be a kdhlerian manifold of complex dimension » + 1. The metric
defines an hermitian scalar product in the tangent spaces of V' and a connec-
tion of type (1, 0) under whose parallelism the scalar product is preserved.
More precisely, let e (x) be a field of unitary frames, defined for x in a neigh-
borhood of V. Its dual coframe field consists of n + 1 complex-valued linear
differential forms ¢, of type (1, 0) such that the hermitian metric can be
written
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(2) d52=20a9a.
The connection forms §,, are characterized by the conditions
( 3 ) 0.:‘5 + 55« = 0 ’
(4) df, = 305 N bp
?

and they can be interpreted geometrically as defining the covariant differential
(5) Dea=§0a5®eﬁ.
The curvature forms 6,, are then defined by
(6) dbos = 250, N Ors + Ous»
and we have T
(7) Os=—6p=1 R0, N 0;.

The skew-hermitian symmetry of 6,, expressed by the first equation of (7) is
equivalent to the symmetry conditions

( 8 ) Rq,sra = 'R,Saﬁy .

The Bianchi identities, which are relations obtained by exterior differentiation
of (4) and (6), give the further symmetry relations

(9 ) R = R,ﬁ«& = Raar,s ’

afrd

and the equation

(10) d@ﬂ5+ Z@ar/\ﬁrﬁ—zew/\erﬁzo‘
The metric on V is called einsteinian, if

R

(11) dXé.)=206.= »6.NE,,
a " n + l a

where

(12 R=3YR.s= R

LY
is the scalar curvature.

The quantities R_,, define the holomorphic sectional curvature to every
tangent vector of V. In fact, let

13) §=248e+0
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be a tangent vector at x. Then the holomorphic sectional curvature is defined
to be

(14) R(x, &) = 2 Z ‘Rn,sr.sgns,é,aéa/(z E,,';En)g .

Because of the symmetry relation (8), R(x, §) is real.
V is said to be of constant holomorphic sectional curvature K if R(x, §) = K
for all (x, £). This is expressed by the condition

1

(15) Ry = — Busds + 8,0,)K

or

(16) O, = ,4111<(0fq AB, +6,50 ND).
r

The above treatment depends on the choice of a frame ficld. As is well-
known, the geometrical results which follow are independent of this choice.
However, it is useful to know explicitly the effect of a change of the frame
field on the various quantities. Let

(7 : ef = 3 uze;
3

be a new frame field defined in the neighborhood in question, where u,, arc
complex-valued C=-functions such that (u,,) is a unitary matrix. Let 6%, 0%

be the forms relative to the frame field e¥. Then, by dcfinition and by (35),
we have -

(18) 0F = .,

and

19 6% = 3 du, 4, + 2 Ut
. r A

2. Hypersurfaces in a kahlerian manifold

Let f: M — V be a holomorphic immersion, with dim M = n, dim V =
n 4 1. In a neighborhood of M we can choose a frame ficld in ¥ such that
€,.1(x), x e M, is orthogonal to the tangent hyperplane to M at x. This is
expressed analytically by the condition

(20) 6n+] = 0.

Since M is an immersed hypersurface, the #; are linearly independent. Using
(4), we get
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0 = d0n+1 = Z 015 /\ 0i,7x+1 -

It follows by Cartan’s lemma that

(21) 02‘,n+1 = ‘Z aikﬁk s
where
(22) Ay = Qg+

M is totally geodesic if a;, = 0.
The e; define a unitary frame field in the tangent bundle of M, with #,; as
the connection forms. Equation (6) gives

dﬁi.f = AZ (’Ui AN 0&‘)’ - 0i,n+15j,n+1 + Oi‘i 3
so that
(23) éij =06 — i1 A Ej,n+]

are the curvature forms of the induced metric on M.
Suppose now that V' is of constant holomorphic sectional curvature, K, so
that the equation (16) holds. Then

_Z
The condition that the induced metric on M is einsteinian can be expressed as
24 SOt Arner = 0 SO N e

Using (21) this condition is equivalent to

(25) Z ;= P0iy »

which gives

26) | no= 3 1aul?20.

From now on suppose n > 2. We wish to show that p is constant. In fact,
we have by (6),

d(Z 0i,n+l AN 5i,n+1) = 05
so that it follows by exterior differentiation of (24) that

do N (L 0: N6)=0.
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Put
dp = ; (0:b: + B:1)
and substitute into the above; we get immediately
dp=0.

If p = 0, we have by (26), a;, = 0 and M is totally geodesic. From now
on suppose that p is a positive constant.

We take the exterior derivative of the equation (21) and make use of (4)
and (6). This gives

@7 ); (day — 23 aifi; — 2 a8 + b uet) N 6 = 0.
d 4 4
It follows that we can put
da;;, — Z a;fe; — ; a;fi; + Ai0n iy ner = Z ai;0;,
7 4

where a,,; are symmetric in all its indices. The complex conjugate of this
equation will give a formula for 4a;,. Differentiating (25) and substituting
these expressions for da;,, da;,, we get

ZJ (@na;;0; + aud; 0, =0,
from which it follows th;1t
4‘; a5 = 0.
Since p > 0, we get ffom the last equation
a;;=0.
We have therefore the equation
(28) da;, — ZJ] a;if.; — ; ;i0i; + bni1ne1 = 0.

Equation (28) is valid for a holomorphically immersed hypersurface of dimen-
sion = 2 in a kdhlerian manifold of constant holomorphic sectional curvature
such that its induced metric is einsteinian. Notice that (28) is still valid if M
is totally geodesic, for then a;, = 0.

We now take the exterior derivative of (28). This gives, after simplification,

29 (0 — —}[K)(az'jau + 8xy0: + 85a5) = 0.

I o — %K = 0, we have
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Bijiy + BijQy + 8,85 = 0.

Putting j = I and summing, we get (n + 2)a;, = 0, so thata;, = 0 and M is
totally geodesic. Hence M is not totally geodesic only if ¢ = K/4, which im-
plies K > 0 since p > 0. We have thus proved the first half of the theorem
stated in the Introduction. Qur next problem is to study the hypersurfaces

satisfying the condition p = % > 0.

3. The complex projective space

For K > 0, ¥ can be realized locally as the complex projective space P, .,
of dimension » + 1 with the Study-Fubini metric. We proceed to give a de-
scription of this metric.

Let V,., be the complex vector space of dimension n + 2, whose points
are the ordered ennuples of complex numbers: Z = (23, -+ -, Zu41). In Vs
we introduce the hermitian scalar product

(30) (W= Z) = (W,Z) = Z ZAwAs W= (w09 ) wn+l) .

The unitary group U(r + 2) in n + 2 variables is the group of all linear
homogeneous transformations on z, leaving the scalar product (30) invariant.
Let V¥, be the subset of V., obtained by the deletion of the zero vector.
Then P, is the orbit space of V¥, , under the action of the group Z — iZ,
A being a complex number == 0. We have thus the projection z: V¥, — P, ;.
To a point peP,,, a vector Z e n-(p) is called a homogeneous coordinate
vector of p, and we will frequently identify p with Z. We put

(31) Zy= ZNZ,Z).
so that (Z,, Z,) = 1. Then the Study-Fubini metric is given by
(32) ds? = (dZ,, dZy) — (dZ,, Z)(Z,, dZ,) .

To study this metric let Z, be a unitary frame in V,,,, so that
(33) (Z4s Zp) =0an-
In the space of all unitary frames in V,,» let w,, be defined by
(34) dzZ, = %]wA,,Z,,,
so that we have
(35) an = — Gps = (dZ0 Zs)

Then w,5 are the Maurer-Cartan forms of U(n + 2) and satisfy the structure
equations
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(36) ' dosp = ; wic N\ ocp .

The same equations remain valid if we restrict ourselves to a frame field
defined over a submanifold of V,,,,. The metric (32) can then be written

37 ds? = );, DB -

It is of the form (2) if we set

(38) 0. = woe -

Equations (3) and (4) will be satisfied, provided that we choose
(39) Op = Wge — oo -

These are therefore the connection forms of the metric (32). By (36) we find
the curvature forms of this metric to be

(40) Op=0,N8,+3,26,N6b..
4

Comparing with (16), we see that the metric (32) has constant holomorphic
sectional curvature equal to 4. From the definition of the metric it is clear
that U(n + 2) acts on P,,, as a group of isometries.

Consider in P,,, a hyperquadric defined by the equation

41) Az;,gb.mzazls =0, bys=bp,.
Under a unitary transformation
(42) Zs = X has?l
i

this goes into the hyperquadric

bk =0.

A B
By introducing the matrices
(43) B='B=(bis), B*='B*=(b%,), U=T= (us),

we can express the relation between the coeflicients b, ; and 5%, by the matrix
equation '

(44 B* = tUBU .
It follows that

B*B* = tUBBU .
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Thus the eigenvalues of BB are invariant under the unitary transformation.
In particular, the invariance of the trace of BB gives

(45) leb,ml2 Zib

We will establish the following lemma:

Given a symmetric matrix B with complex elements, there exists a unitary
matrix U such that *UBU is diagonal.

For n =0, i.e., for a (2 X 2)-matrix B this can be verified by an elementa-
ry calculation, and we suppose the lemma true in this case. Let

(46) SD(B) =A§il bAb‘ I2 ’

e., ¢(B) is the sum of the squares of the absolute values of the non-diagonal
elements of B. Suppose | by, | > | b4z |, A # B ; this can always be achieved
by interchanging the rows and columns when necessary. Let U, be a (2 X 2)-

boy b
unitary matrix such that tU,B*U, is diagonal, where B* = ( o0 0’) and let
10 11
U= (UO 0>,
0 17

where [ is the (n X n)-unit matrix. Then we have
Z'.Ib A= Z&bn! + 2] b, |2
and '
@(B*) = o(B) — 2] by, |*.
Under the assumption that | by, | > | b4s|, A # B, we have
(B) < (n+ D(n+2)| by i?,

from which it follows that

" nn+3)
47 o(B*) < CERCEY)) @(B) .

Notice that the factor at the right-hand side before ¢(B) is < 1. We can
therefore find a sequence of unitary matrices U,, ---, U,, ---, such that
o(tU,BU,) is strictly monotone decreasing and tends to zero. Since the uni-
tary group is compact, there exists a unitary matrix U, such that o(‘*U_BU.)
= 0 and ‘U_BU.,, is diagonal. This proves the lemma.

It follows that the equation of the hyperquadric can be by umtary trans-
formations brought to the normal form
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(48) bozg + cte + bll+lzfl+l = 0 .

We can further suppose that b, are real and > 0. The ratios of b, are in-
variants of the hyperquadric under U(n + 2). In particular, the hyperquadric

(49) o+ 22,=0

will be called a hypersphere.
A one-one mapping T:V,,,— V., is called antilinear, if

T(Z, + Z,) = T(Z,) + T(Zy),

(50) -
T('zz) = lT(Z) 2 Z: ZU Z2 € V71+2 3

A being a complex number. It induces a one-one mapping in P,.;. By the
properties (50) an antl-lmear mapping is completely determined by its effect
on a frame.

4. Completion of the proof of the theorem

We wish to prove the second part of the theorem stated in the Introduction
by showing that a hypersurface in P, , (with the Study-Fubini metric) whose
induced metric is einsteinian and which is not totally geodesic is necessarily
a hypersphere.

Continuing the proof of §2, we have K = 4 and p = 1. We apply a change
of the frame field as defined by (17) with

(51) Ui o1 = 05 Upit,ne1 = 1 »

o that the normal vector e,,, to M remains unchanged. By (18) and (19)
we have respectively

8 = Z U6,
6Fur = é Uil 0,7 -
If we set
(52) O er = ; ato¥ ,
we get
(53) . af, = zZ;: Ug @l .

Our lemma in §3 implies that unitary matrices (u;;) can be so chosen that
the matrix (a%) is diagonal. Moreover, since p = 1, we can even make it the
unit matrix.

Suppose such a change of the frame field be already carried out. By drop-
ping the asterisks, we have a;; = §; and
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54 Biner=0;.
Equation (28) becomes
(55 Ok + Ori — OikPrsiner=0.
By (39) this gives
(56) o + 0p — 0ix(@oo + Onainer) = 0.

We now modify Z,,; by setting

Z* =e%Z, ,, ¢real
Then
OFner = [dZ%1, Z30) = 1 + @nirna
and we have .
Woo + OF 1 i = idd + oo + Onar,nes -
Since i(wgy + @n.1.n.1) is real-valued and
d(iwgy + iwn.1,ne1) =0,
we can determine ¢ so that
®go + W3 =0,

Dropping the asterisks again, we have
(57 Woo + Ousruer =0
and (56) gives
(58) wix + 0 =0.

Let 7 be an anti-linear transformation in P,,,, so that
69 dATZY) = T @4nT(Zs).-
By using (57), (58) and (59), we find

d(Zo + T(Z2.1)) = 00o(Zo + T(Zr.1)) + 2wl Z; — T(Z1)),

60  ATE)+ Zun) = = 00oT@o) + Zar) — £ GoiZi — TZ0),

d(Z; — T(Z) = 0e:(T(Zy) + Zn.r) — D0i(Zy + T(Z,.1))
+ 4::‘. wu(Zy — T(Zy)) .
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This is a differential system which is linear and homogeneous in the vectors
Zy+T(Z,,), T(Zo) + Z0ohs Z; — T(Z). 1t follows that if these vectors are
zero at a point of M, they are identically zero. We choose the anti-linear
transformation T so that they are zero at p, ¢ M and we have

(6 I(Zy) = — Zno. T(Zy)=—2o, T(Z)=2Z,
everywhere on M. As a consequence we get
(62) (Zy, T(Zy)) = 0.

We put

6 O (Zo(Po) = ZnrPO)N 2 s @y = HZo(Po) + Zu 1PN 2,
a; = Z;(po) .

Then a, is a unitary frame having the property

(64) Ta,=a,.

Let
Zy(p) = Z; 2.4,4, peM.
Then
| T(Zy(p)) = ; Z4ay,
and equation (62) can be written
21] z=0.
This proves that M is a hypersph;ere.
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